Linux内核修改转发网络数据包
嵌入式Linux内核修改转发skb网络数据包
实际的项目软件开过程中,碰到一个需求,需要修改以太网接收到的数据包,主要有两点需求:
- L2层特定自定义协议包修改目的MAC地址
- 针对特定端口的UDP包,修改其目的IP后,再接交给上层(或在Bridge转发之前)处理
方案评估
第一点需求,修改L2层的MAC地址,可采用:
- 采用ebtable的DNAT修改L2层MAC地址
- 通过网络驱动传参修改
第二点需求,修改Bridge转发之前的特定端口包目的IP,可采用:
用iptables的INT_NET_PREROUTING Hook,结合br_netfilter模块的bridge-nf-call-iptables功能实现
/proc/sys/net/bridge/bridge-nf-call-iptables
- 编写一个netfilter hook内核模块,通过bridge NF_BR_PRE_ROUTING hook点特殊处理
最终采用的方案
上述两点的两个方案,理论上都是第一条比较优雅,但是现实总是残酷的,在嵌入式系统上,芯片资源有限,CPU\RAM\Flash资源受限的情况下,无论是ebtables或是iptables都太重了,特别还要考虑转发执行效率尽量的减少CPU处理,最终都采用了第二种策略。
实现注意点
- 网络驱动的代码
netif_rx(skb);
都处于中断的下半区,代码需要高效简短,否则严重影响CPU。 - 编写netfilter hook模块时,挂载在NF_BR_PRE_ROUTING hook处理节点,处于L2层,收到的skb数据包,无论是网络层、还是传输层指针都是无效的,不能直接引用
挂载点协议选择
NFPROTO_BRIDGE
static struct nf_hook_ops nfho = { .hook = hook_func, .hooknum = NF_BR_PRE_ROUTING, .pf = NFPROTO_BRIDGE, .priority = NF_BR_PRI_FIRST, };
- 修改了UDP包的目的IP后,需要重新计算UDP及IP Header的checksum;此外,这里仅修改目的IP,不需要重新全部计算,可以使用
inet_proto_csum_replace4
只作替代更新,提高效率 - 目的IP如果修改为组播或广播包,则需要对应的修改eth header的目的MAC地址,否则包不会经过Bridge广播,从L2层上看还是会传给NF_BR_LOCAL_IN
参考代码及资料
参考代码1
/* * Copyright (c) 2007-2012 Nicira, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/skbuff.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/openvswitch.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/in6.h> #include <linux/if_arp.h> #include <linux/if_vlan.h> #include <net/ip.h> #include <net/ipv6.h> #include <net/checksum.h> #include <net/dsfield.h> #include "checksum.h" #include "datapath.h" #include "vlan.h" #include "vport.h" static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, const struct nlattr *attr, int len, struct ovs_key_ipv4_tunnel *tun_key, bool keep_skb); static int make_writable(struct sk_buff *skb, int write_len) { if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) return 0; return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); } /* remove VLAN header from packet and update csum accordingly. */ static int __pop_vlan_tci(struct sk_buff *skb, __be16 *current_tci) { struct vlan_hdr *vhdr; int err; err = make_writable(skb, VLAN_ETH_HLEN); if (unlikely(err)) return err; if (get_ip_summed(skb) == OVS_CSUM_COMPLETE) skb->csum = csum_sub(skb->csum, csum_partial(skb->data + ETH_HLEN, VLAN_HLEN, 0)); vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); *current_tci = vhdr->h_vlan_TCI; memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); __skb_pull(skb, VLAN_HLEN); vlan_set_encap_proto(skb, vhdr); skb->mac_header += VLAN_HLEN; skb_reset_mac_len(skb); return 0; } static int pop_vlan(struct sk_buff *skb) { __be16 tci; int err; if (likely(vlan_tx_tag_present(skb))) { vlan_set_tci(skb, 0); } else { if (unlikely(skb->protocol != htons(ETH_P_8021Q) || skb->len < VLAN_ETH_HLEN)) return 0; err = __pop_vlan_tci(skb, &tci); if (err) return err; } /* move next vlan tag to hw accel tag */ if (likely(skb->protocol != htons(ETH_P_8021Q) || skb->len < VLAN_ETH_HLEN)) return 0; err = __pop_vlan_tci(skb, &tci); if (unlikely(err)) return err; __vlan_hwaccel_put_tag(skb, ntohs(tci)); return 0; } static int push_vlan(struct sk_buff *skb, const struct ovs_action_push_vlan *vlan) { if (unlikely(vlan_tx_tag_present(skb))) { u16 current_tag; /* push down current VLAN tag */ current_tag = vlan_tx_tag_get(skb); if (!__vlan_put_tag(skb, current_tag)) return -ENOMEM; if (get_ip_summed(skb) == OVS_CSUM_COMPLETE) skb->csum = csum_add(skb->csum, csum_partial(skb->data + ETH_HLEN, VLAN_HLEN, 0)); } __vlan_hwaccel_put_tag(skb, ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT); return 0; } static int set_eth_addr(struct sk_buff *skb, const struct ovs_key_ethernet *eth_key) { int err; err = make_writable(skb, ETH_HLEN); if (unlikely(err)) return err; memcpy(eth_hdr(skb)->h_source, eth_key->eth_src, ETH_ALEN); memcpy(eth_hdr(skb)->h_dest, eth_key->eth_dst, ETH_ALEN); return 0; } static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh, __be32 *addr, __be32 new_addr) { int transport_len = skb->len - skb_transport_offset(skb); if (nh->protocol == IPPROTO_TCP) { if (likely(transport_len >= sizeof(struct tcphdr))) inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb, *addr, new_addr, 1); } else if (nh->protocol == IPPROTO_UDP) { if (likely(transport_len >= sizeof(struct udphdr))) { struct udphdr *uh = udp_hdr(skb); if (uh->check || get_ip_summed(skb) == OVS_CSUM_PARTIAL) { inet_proto_csum_replace4(&uh->check, skb, *addr, new_addr, 1); if (!uh->check) uh->check = CSUM_MANGLED_0; } } } csum_replace4(&nh->check, *addr, new_addr); skb_clear_rxhash(skb); *addr = new_addr; } static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto, __be32 addr[4], const __be32 new_addr[4]) { int transport_len = skb->len - skb_transport_offset(skb); if (l4_proto == IPPROTO_TCP) { if (likely(transport_len >= sizeof(struct tcphdr))) inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb, addr, new_addr, 1); } else if (l4_proto == IPPROTO_UDP) { if (likely(transport_len >= sizeof(struct udphdr))) { struct udphdr *uh = udp_hdr(skb); if (uh->check || get_ip_summed(skb) == OVS_CSUM_PARTIAL) { inet_proto_csum_replace16(&uh->check, skb, addr, new_addr, 1); if (!uh->check) uh->check = CSUM_MANGLED_0; } } } } static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto, __be32 addr[4], const __be32 new_addr[4], bool recalculate_csum) { if (recalculate_csum) update_ipv6_checksum(skb, l4_proto, addr, new_addr); skb_clear_rxhash(skb); memcpy(addr, new_addr, sizeof(__be32[4])); } static void set_ipv6_tc(struct ipv6hdr *nh, u8 tc) { nh->priority = tc >> 4; nh->flow_lbl[0] = (nh->flow_lbl[0] & 0x0F) | ((tc & 0x0F) << 4); } static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl) { nh->flow_lbl[0] = (nh->flow_lbl[0] & 0xF0) | (fl & 0x000F0000) >> 16; nh->flow_lbl[1] = (fl & 0x0000FF00) >> 8; nh->flow_lbl[2] = fl & 0x000000FF; } static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl) { csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8)); nh->ttl = new_ttl; } static int set_ipv4(struct sk_buff *skb, const struct ovs_key_ipv4 *ipv4_key) { struct iphdr *nh; int err; err = make_writable(skb, skb_network_offset(skb) + sizeof(struct iphdr)); if (unlikely(err)) return err; nh = ip_hdr(skb); if (ipv4_key->ipv4_src != nh->saddr) set_ip_addr(skb, nh, &nh->saddr, ipv4_key->ipv4_src); if (ipv4_key->ipv4_dst != nh->daddr) set_ip_addr(skb, nh, &nh->daddr, ipv4_key->ipv4_dst); if (ipv4_key->ipv4_tos != nh->tos) ipv4_change_dsfield(nh, 0, ipv4_key->ipv4_tos); if (ipv4_key->ipv4_ttl != nh->ttl) set_ip_ttl(skb, nh, ipv4_key->ipv4_ttl); return 0; } static int set_ipv6(struct sk_buff *skb, const struct ovs_key_ipv6 *ipv6_key) { struct ipv6hdr *nh; int err; __be32 *saddr; __be32 *daddr; err = make_writable(skb, skb_network_offset(skb) + sizeof(struct ipv6hdr)); if (unlikely(err)) return err; nh = ipv6_hdr(skb); saddr = (__be32 *)&nh->saddr; daddr = (__be32 *)&nh->daddr; if (memcmp(ipv6_key->ipv6_src, saddr, sizeof(ipv6_key->ipv6_src))) set_ipv6_addr(skb, ipv6_key->ipv6_proto, saddr, ipv6_key->ipv6_src, true); if (memcmp(ipv6_key->ipv6_dst, daddr, sizeof(ipv6_key->ipv6_dst))) { unsigned int offset = 0; int flags = OVS_IP6T_FH_F_SKIP_RH; bool recalc_csum = true; if (ipv6_ext_hdr(nh->nexthdr)) recalc_csum = ipv6_find_hdr(skb, &offset, NEXTHDR_ROUTING, NULL, &flags) != NEXTHDR_ROUTING; set_ipv6_addr(skb, ipv6_key->ipv6_proto, daddr, ipv6_key->ipv6_dst, recalc_csum); } set_ipv6_tc(nh, ipv6_key->ipv6_tclass); set_ipv6_fl(nh, ntohl(ipv6_key->ipv6_label)); nh->hop_limit = ipv6_key->ipv6_hlimit; return 0; } /* Must follow make_writable() since that can move the skb data. */ static void set_tp_port(struct sk_buff *skb, __be16 *port, __be16 new_port, __sum16 *check) { inet_proto_csum_replace2(check, skb, *port, new_port, 0); *port = new_port; skb_clear_rxhash(skb); } static void set_udp_port(struct sk_buff *skb, __be16 *port, __be16 new_port) { struct udphdr *uh = udp_hdr(skb); if (uh->check && get_ip_summed(skb) != OVS_CSUM_PARTIAL) { set_tp_port(skb, port, new_port, &uh->check); if (!uh->check) uh->check = CSUM_MANGLED_0; } else { *port = new_port; skb_clear_rxhash(skb); } } static int set_udp(struct sk_buff *skb, const struct ovs_key_udp *udp_port_key) { struct udphdr *uh; int err; err = make_writable(skb, skb_transport_offset(skb) + sizeof(struct udphdr)); if (unlikely(err)) return err; uh = udp_hdr(skb); if (udp_port_key->udp_src != uh->source) set_udp_port(skb, &uh->source, udp_port_key->udp_src); if (udp_port_key->udp_dst != uh->dest) set_udp_port(skb, &uh->dest, udp_port_key->udp_dst); return 0; } static int set_tcp(struct sk_buff *skb, const struct ovs_key_tcp *tcp_port_key) { struct tcphdr *th; int err; err = make_writable(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)); if (unlikely(err)) return err; th = tcp_hdr(skb); if (tcp_port_key->tcp_src != th->source) set_tp_port(skb, &th->source, tcp_port_key->tcp_src, &th->check); if (tcp_port_key->tcp_dst != th->dest) set_tp_port(skb, &th->dest, tcp_port_key->tcp_dst, &th->check); return 0; } static int do_output(struct datapath *dp, struct sk_buff *skb, int out_port) { struct vport *vport; if (unlikely(!skb)) return -ENOMEM; vport = ovs_vport_rcu(dp, out_port); if (unlikely(!vport)) { kfree_skb(skb); return -ENODEV; } ovs_vport_send(vport, skb); return 0; } static int output_userspace(struct datapath *dp, struct sk_buff *skb, const struct nlattr *attr) { struct dp_upcall_info upcall; const struct nlattr *a; int rem; upcall.cmd = OVS_PACKET_CMD_ACTION; upcall.key = &OVS_CB(skb)->flow->key; upcall.userdata = NULL; upcall.pid = 0; for (a = nla_data(attr), rem = nla_len(attr); rem > 0; a = nla_next(a, &rem)) { switch (nla_type(a)) { case OVS_USERSPACE_ATTR_USERDATA: upcall.userdata = a; break; case OVS_USERSPACE_ATTR_PID: upcall.pid = nla_get_u32(a); break; } } return ovs_dp_upcall(dp, skb, &upcall); } static int sample(struct datapath *dp, struct sk_buff *skb, const struct nlattr *attr, struct ovs_key_ipv4_tunnel *tun_key) { const struct nlattr *acts_list = NULL; const struct nlattr *a; int rem; for (a = nla_data(attr), rem = nla_len(attr); rem > 0; a = nla_next(a, &rem)) { switch (nla_type(a)) { case OVS_SAMPLE_ATTR_PROBABILITY: if (net_random() >= nla_get_u32(a)) return 0; break; case OVS_SAMPLE_ATTR_ACTIONS: acts_list = a; break; } } return do_execute_actions(dp, skb, nla_data(acts_list), nla_len(acts_list), tun_key, true); } static int execute_set_action(struct sk_buff *skb, const struct nlattr *nested_attr, struct ovs_key_ipv4_tunnel *tun_key) { int err = 0; switch (nla_type(nested_attr)) { case OVS_KEY_ATTR_PRIORITY: skb->priority = nla_get_u32(nested_attr); break; case OVS_KEY_ATTR_TUN_ID: /* If we're only using the TUN_ID action, store the value in a * temporary instance of struct ovs_key_ipv4_tunnel on the stack. * If both IPV4_TUNNEL and TUN_ID are being used together we * can't write into the IPV4_TUNNEL action, so make a copy and * write into that version. */ if (!OVS_CB(skb)->tun_key) memset(tun_key, 0, sizeof(*tun_key)); else if (OVS_CB(skb)->tun_key != tun_key) memcpy(tun_key, OVS_CB(skb)->tun_key, sizeof(*tun_key)); OVS_CB(skb)->tun_key = tun_key; OVS_CB(skb)->tun_key->tun_id = nla_get_be64(nested_attr); break; case OVS_KEY_ATTR_IPV4_TUNNEL: OVS_CB(skb)->tun_key = nla_data(nested_attr); break; case OVS_KEY_ATTR_ETHERNET: err = set_eth_addr(skb, nla_data(nested_attr)); break; case OVS_KEY_ATTR_IPV4: err = set_ipv4(skb, nla_data(nested_attr)); break; case OVS_KEY_ATTR_IPV6: err = set_ipv6(skb, nla_data(nested_attr)); break; case OVS_KEY_ATTR_TCP: err = set_tcp(skb, nla_data(nested_attr)); break; case OVS_KEY_ATTR_UDP: err = set_udp(skb, nla_data(nested_attr)); break; } return err; } /* Execute a list of actions against 'skb'. */ static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, const struct nlattr *attr, int len, struct ovs_key_ipv4_tunnel *tun_key, bool keep_skb) { /* Every output action needs a separate clone of 'skb', but the common * case is just a single output action, so that doing a clone and * then freeing the original skbuff is wasteful. So the following code * is slightly obscure just to avoid that. */ int prev_port = -1; const struct nlattr *a; int rem; for (a = attr, rem = len; rem > 0; a = nla_next(a, &rem)) { int err = 0; if (prev_port != -1) { do_output(dp, skb_clone(skb, GFP_ATOMIC), prev_port); prev_port = -1; } switch (nla_type(a)) { case OVS_ACTION_ATTR_OUTPUT: prev_port = nla_get_u32(a); break; case OVS_ACTION_ATTR_USERSPACE: output_userspace(dp, skb, a); break; case OVS_ACTION_ATTR_PUSH_VLAN: err = push_vlan(skb, nla_data(a)); if (unlikely(err)) /* skb already freed. */ return err; break; case OVS_ACTION_ATTR_POP_VLAN: err = pop_vlan(skb); break; case OVS_ACTION_ATTR_SET: err = execute_set_action(skb, nla_data(a), tun_key); break; case OVS_ACTION_ATTR_SAMPLE: err = sample(dp, skb, a, tun_key); break; } if (unlikely(err)) { kfree_skb(skb); return err; } } if (prev_port != -1) { if (keep_skb) skb = skb_clone(skb, GFP_ATOMIC); do_output(dp, skb, prev_port); } else if (!keep_skb) consume_skb(skb); return 0; } /* We limit the number of times that we pass into execute_actions() * to avoid blowing out the stack in the event that we have a loop. */ #define MAX_LOOPS 5 struct loop_counter { u8 count; /* Count. */ bool looping; /* Loop detected? */ }; static DEFINE_PER_CPU(struct loop_counter, loop_counters); static int loop_suppress(struct datapath *dp, struct sw_flow_actions *actions) { if (net_ratelimit()) pr_warn("%s: flow looped %d times, dropping\n", ovs_dp_name(dp), MAX_LOOPS); actions->actions_len = 0; return -ELOOP; } /* Execute a list of actions against 'skb'. */ int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb) { struct sw_flow_actions *acts = rcu_dereference(OVS_CB(skb)->flow->sf_acts); struct loop_counter *loop; int error; struct ovs_key_ipv4_tunnel tun_key; /* Check whether we've looped too much. */ loop = &__get_cpu_var(loop_counters); if (unlikely(++loop->count > MAX_LOOPS)) loop->looping = true; if (unlikely(loop->looping)) { error = loop_suppress(dp, acts); kfree_skb(skb); goto out_loop; } OVS_CB(skb)->tun_key = NULL; error = do_execute_actions(dp, skb, acts->actions, acts->actions_len, &tun_key, false); /* Check whether sub-actions looped too much. */ if (unlikely(loop->looping)) error = loop_suppress(dp, acts); out_loop: /* Decrement loop counter. */ if (!--loop->count) loop->looping = false; return error; }
独立内核模块示例代码
#include <linux/module.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv4.h> #include <linux/ip.h> #include <linux/udp.h> #include <linux/skbuff.h> #define TARGET_PORT 12345 // 设置特定的目的端口 #define MULTICAST_IP "224.0.0.1" // 指定的组播IP地址 // Netfilter钩子函数,用于处理入站的数据包 static unsigned int hook_func(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct iphdr *ip_header; struct udphdr *udp_header; // 检查skb包是否为空 if (!skb) return NF_ACCEPT; // 检查skb包是否包含IP头部 if (!skb_network_header(skb)) return NF_ACCEPT; // 获取IP头部和UDP头部 ip_header = ip_hdr(skb); udp_header = (struct udphdr *)(skb_transport_header(skb) + ip_hdrlen(skb)); // 检查是否为UDP协议和特定目的端口 if (ip_header->protocol == IPPROTO_UDP && ntohs(udp_header->dest) == TARGET_PORT) { // 修改目的IP地址为指定的组播IP ip_header->daddr = in_aton(MULTICAST_IP); // 重新计算校验值 udp_header->check = 0; udp_header->check = csum_tcpudp_magic(ip_header->saddr, ip_header->daddr, skb->len - ip_hdrlen(skb), IPPROTO_UDP, csum_partial(udp_header, skb->len - ip_hdrlen(skb), 0)); // 更新校验和 skb->ip_summed = CHECKSUM_NONE; skb->pkt_type = PACKET_MULTICAST; // 让tcp/ip协议栈处理skb包 return NF_ACCEPT; } return NF_ACCEPT; } // 初始化和清理模块 static struct nf_hook_ops nfho = { .hook = hook_func, .hooknum = NF_BR_PRE_ROUTING, .pf = NFPROTO_BRIDGE, .priority = NF_BR_PRI_FIRST, }; static int __init my_module_init(void) { return nf_register_hook(&nfho); } static void __exit my_module_exit(void) { nf_unregister_hook(&nfho); } module_init(my_module_init); module_exit(my_module_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Kimson");
- linux内核中如何修改skb报文
- linux-2-6-network-stack-paper.pdf
- skbuff.pdf