giffgaff卡分享
通过下面链接注册申请免费giffgaff卡,激活后将各获得5英镑话费:
Get your giffgaff SIM here, with a reward when you join.
通过下面链接注册申请免费giffgaff卡,激活后将各获得5英镑话费:
Get your giffgaff SIM here, with a reward when you join.
Lose everything and you're a fool!
实际的项目软件开过程中,碰到一个需求,需要修改以太网接收到的数据包,主要有两点需求:
第一点需求,修改L2层的MAC地址,可采用:
第二点需求,修改Bridge转发之前的特定端口包目的IP,可采用:
用iptables的INT_NET_PREROUTING Hook,结合br_netfilter模块的bridge-nf-call-iptables功能实现
/proc/sys/net/bridge/bridge-nf-call-iptables
上述两点的两个方案,理论上都是第一条比较优雅,但是现实总是残酷的,在嵌入式系统上,芯片资源有限,CPU\RAM\Flash资源受限的情况下,无论是ebtables或是iptables都太重了,特别还要考虑转发执行效率尽量的减少CPU处理,最终都采用了第二种策略。
netif_rx(skb);
都处于中断的下半区,代码需要高效简短,否则严重影响CPU。挂载点协议选择NFPROTO_BRIDGE
static struct nf_hook_ops nfho = {
.hook = hook_func,
.hooknum = NF_BR_PRE_ROUTING,
.pf = NFPROTO_BRIDGE,
.priority = NF_BR_PRI_FIRST,
};
inet_proto_csum_replace4
只作替代更新,提高效率参考代码1
/*
* Copyright (c) 2007-2012 Nicira, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/openvswitch.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/in6.h>
#include <linux/if_arp.h>
#include <linux/if_vlan.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/checksum.h>
#include <net/dsfield.h>
#include "checksum.h"
#include "datapath.h"
#include "vlan.h"
#include "vport.h"
static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
const struct nlattr *attr, int len,
struct ovs_key_ipv4_tunnel *tun_key, bool keep_skb);
static int make_writable(struct sk_buff *skb, int write_len)
{
if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
return 0;
return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
}
/* remove VLAN header from packet and update csum accordingly. */
static int __pop_vlan_tci(struct sk_buff *skb, __be16 *current_tci)
{
struct vlan_hdr *vhdr;
int err;
err = make_writable(skb, VLAN_ETH_HLEN);
if (unlikely(err))
return err;
if (get_ip_summed(skb) == OVS_CSUM_COMPLETE)
skb->csum = csum_sub(skb->csum, csum_partial(skb->data
+ ETH_HLEN, VLAN_HLEN, 0));
vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
*current_tci = vhdr->h_vlan_TCI;
memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
__skb_pull(skb, VLAN_HLEN);
vlan_set_encap_proto(skb, vhdr);
skb->mac_header += VLAN_HLEN;
skb_reset_mac_len(skb);
return 0;
}
static int pop_vlan(struct sk_buff *skb)
{
__be16 tci;
int err;
if (likely(vlan_tx_tag_present(skb))) {
vlan_set_tci(skb, 0);
} else {
if (unlikely(skb->protocol != htons(ETH_P_8021Q) ||
skb->len < VLAN_ETH_HLEN))
return 0;
err = __pop_vlan_tci(skb, &tci);
if (err)
return err;
}
/* move next vlan tag to hw accel tag */
if (likely(skb->protocol != htons(ETH_P_8021Q) ||
skb->len < VLAN_ETH_HLEN))
return 0;
err = __pop_vlan_tci(skb, &tci);
if (unlikely(err))
return err;
__vlan_hwaccel_put_tag(skb, ntohs(tci));
return 0;
}
static int push_vlan(struct sk_buff *skb, const struct ovs_action_push_vlan *vlan)
{
if (unlikely(vlan_tx_tag_present(skb))) {
u16 current_tag;
/* push down current VLAN tag */
current_tag = vlan_tx_tag_get(skb);
if (!__vlan_put_tag(skb, current_tag))
return -ENOMEM;
if (get_ip_summed(skb) == OVS_CSUM_COMPLETE)
skb->csum = csum_add(skb->csum, csum_partial(skb->data
+ ETH_HLEN, VLAN_HLEN, 0));
}
__vlan_hwaccel_put_tag(skb, ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
return 0;
}
static int set_eth_addr(struct sk_buff *skb,
const struct ovs_key_ethernet *eth_key)
{
int err;
err = make_writable(skb, ETH_HLEN);
if (unlikely(err))
return err;
memcpy(eth_hdr(skb)->h_source, eth_key->eth_src, ETH_ALEN);
memcpy(eth_hdr(skb)->h_dest, eth_key->eth_dst, ETH_ALEN);
return 0;
}
static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
__be32 *addr, __be32 new_addr)
{
int transport_len = skb->len - skb_transport_offset(skb);
if (nh->protocol == IPPROTO_TCP) {
if (likely(transport_len >= sizeof(struct tcphdr)))
inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
*addr, new_addr, 1);
} else if (nh->protocol == IPPROTO_UDP) {
if (likely(transport_len >= sizeof(struct udphdr))) {
struct udphdr *uh = udp_hdr(skb);
if (uh->check ||
get_ip_summed(skb) == OVS_CSUM_PARTIAL) {
inet_proto_csum_replace4(&uh->check, skb,
*addr, new_addr, 1);
if (!uh->check)
uh->check = CSUM_MANGLED_0;
}
}
}
csum_replace4(&nh->check, *addr, new_addr);
skb_clear_rxhash(skb);
*addr = new_addr;
}
static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
__be32 addr[4], const __be32 new_addr[4])
{
int transport_len = skb->len - skb_transport_offset(skb);
if (l4_proto == IPPROTO_TCP) {
if (likely(transport_len >= sizeof(struct tcphdr)))
inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
addr, new_addr, 1);
} else if (l4_proto == IPPROTO_UDP) {
if (likely(transport_len >= sizeof(struct udphdr))) {
struct udphdr *uh = udp_hdr(skb);
if (uh->check ||
get_ip_summed(skb) == OVS_CSUM_PARTIAL) {
inet_proto_csum_replace16(&uh->check, skb,
addr, new_addr, 1);
if (!uh->check)
uh->check = CSUM_MANGLED_0;
}
}
}
}
static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
__be32 addr[4], const __be32 new_addr[4],
bool recalculate_csum)
{
if (recalculate_csum)
update_ipv6_checksum(skb, l4_proto, addr, new_addr);
skb_clear_rxhash(skb);
memcpy(addr, new_addr, sizeof(__be32[4]));
}
static void set_ipv6_tc(struct ipv6hdr *nh, u8 tc)
{
nh->priority = tc >> 4;
nh->flow_lbl[0] = (nh->flow_lbl[0] & 0x0F) | ((tc & 0x0F) << 4);
}
static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl)
{
nh->flow_lbl[0] = (nh->flow_lbl[0] & 0xF0) | (fl & 0x000F0000) >> 16;
nh->flow_lbl[1] = (fl & 0x0000FF00) >> 8;
nh->flow_lbl[2] = fl & 0x000000FF;
}
static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl)
{
csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
nh->ttl = new_ttl;
}
static int set_ipv4(struct sk_buff *skb, const struct ovs_key_ipv4 *ipv4_key)
{
struct iphdr *nh;
int err;
err = make_writable(skb, skb_network_offset(skb) +
sizeof(struct iphdr));
if (unlikely(err))
return err;
nh = ip_hdr(skb);
if (ipv4_key->ipv4_src != nh->saddr)
set_ip_addr(skb, nh, &nh->saddr, ipv4_key->ipv4_src);
if (ipv4_key->ipv4_dst != nh->daddr)
set_ip_addr(skb, nh, &nh->daddr, ipv4_key->ipv4_dst);
if (ipv4_key->ipv4_tos != nh->tos)
ipv4_change_dsfield(nh, 0, ipv4_key->ipv4_tos);
if (ipv4_key->ipv4_ttl != nh->ttl)
set_ip_ttl(skb, nh, ipv4_key->ipv4_ttl);
return 0;
}
static int set_ipv6(struct sk_buff *skb, const struct ovs_key_ipv6 *ipv6_key)
{
struct ipv6hdr *nh;
int err;
__be32 *saddr;
__be32 *daddr;
err = make_writable(skb, skb_network_offset(skb) +
sizeof(struct ipv6hdr));
if (unlikely(err))
return err;
nh = ipv6_hdr(skb);
saddr = (__be32 *)&nh->saddr;
daddr = (__be32 *)&nh->daddr;
if (memcmp(ipv6_key->ipv6_src, saddr, sizeof(ipv6_key->ipv6_src)))
set_ipv6_addr(skb, ipv6_key->ipv6_proto, saddr,
ipv6_key->ipv6_src, true);
if (memcmp(ipv6_key->ipv6_dst, daddr, sizeof(ipv6_key->ipv6_dst))) {
unsigned int offset = 0;
int flags = OVS_IP6T_FH_F_SKIP_RH;
bool recalc_csum = true;
if (ipv6_ext_hdr(nh->nexthdr))
recalc_csum = ipv6_find_hdr(skb, &offset,
NEXTHDR_ROUTING, NULL,
&flags) != NEXTHDR_ROUTING;
set_ipv6_addr(skb, ipv6_key->ipv6_proto, daddr,
ipv6_key->ipv6_dst, recalc_csum);
}
set_ipv6_tc(nh, ipv6_key->ipv6_tclass);
set_ipv6_fl(nh, ntohl(ipv6_key->ipv6_label));
nh->hop_limit = ipv6_key->ipv6_hlimit;
return 0;
}
/* Must follow make_writable() since that can move the skb data. */
static void set_tp_port(struct sk_buff *skb, __be16 *port,
__be16 new_port, __sum16 *check)
{
inet_proto_csum_replace2(check, skb, *port, new_port, 0);
*port = new_port;
skb_clear_rxhash(skb);
}
static void set_udp_port(struct sk_buff *skb, __be16 *port, __be16 new_port)
{
struct udphdr *uh = udp_hdr(skb);
if (uh->check && get_ip_summed(skb) != OVS_CSUM_PARTIAL) {
set_tp_port(skb, port, new_port, &uh->check);
if (!uh->check)
uh->check = CSUM_MANGLED_0;
} else {
*port = new_port;
skb_clear_rxhash(skb);
}
}
static int set_udp(struct sk_buff *skb, const struct ovs_key_udp *udp_port_key)
{
struct udphdr *uh;
int err;
err = make_writable(skb, skb_transport_offset(skb) +
sizeof(struct udphdr));
if (unlikely(err))
return err;
uh = udp_hdr(skb);
if (udp_port_key->udp_src != uh->source)
set_udp_port(skb, &uh->source, udp_port_key->udp_src);
if (udp_port_key->udp_dst != uh->dest)
set_udp_port(skb, &uh->dest, udp_port_key->udp_dst);
return 0;
}
static int set_tcp(struct sk_buff *skb, const struct ovs_key_tcp *tcp_port_key)
{
struct tcphdr *th;
int err;
err = make_writable(skb, skb_transport_offset(skb) +
sizeof(struct tcphdr));
if (unlikely(err))
return err;
th = tcp_hdr(skb);
if (tcp_port_key->tcp_src != th->source)
set_tp_port(skb, &th->source, tcp_port_key->tcp_src, &th->check);
if (tcp_port_key->tcp_dst != th->dest)
set_tp_port(skb, &th->dest, tcp_port_key->tcp_dst, &th->check);
return 0;
}
static int do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
{
struct vport *vport;
if (unlikely(!skb))
return -ENOMEM;
vport = ovs_vport_rcu(dp, out_port);
if (unlikely(!vport)) {
kfree_skb(skb);
return -ENODEV;
}
ovs_vport_send(vport, skb);
return 0;
}
static int output_userspace(struct datapath *dp, struct sk_buff *skb,
const struct nlattr *attr)
{
struct dp_upcall_info upcall;
const struct nlattr *a;
int rem;
upcall.cmd = OVS_PACKET_CMD_ACTION;
upcall.key = &OVS_CB(skb)->flow->key;
upcall.userdata = NULL;
upcall.pid = 0;
for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
a = nla_next(a, &rem)) {
switch (nla_type(a)) {
case OVS_USERSPACE_ATTR_USERDATA:
upcall.userdata = a;
break;
case OVS_USERSPACE_ATTR_PID:
upcall.pid = nla_get_u32(a);
break;
}
}
return ovs_dp_upcall(dp, skb, &upcall);
}
static int sample(struct datapath *dp, struct sk_buff *skb,
const struct nlattr *attr,
struct ovs_key_ipv4_tunnel *tun_key)
{
const struct nlattr *acts_list = NULL;
const struct nlattr *a;
int rem;
for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
a = nla_next(a, &rem)) {
switch (nla_type(a)) {
case OVS_SAMPLE_ATTR_PROBABILITY:
if (net_random() >= nla_get_u32(a))
return 0;
break;
case OVS_SAMPLE_ATTR_ACTIONS:
acts_list = a;
break;
}
}
return do_execute_actions(dp, skb, nla_data(acts_list),
nla_len(acts_list), tun_key, true);
}
static int execute_set_action(struct sk_buff *skb,
const struct nlattr *nested_attr,
struct ovs_key_ipv4_tunnel *tun_key)
{
int err = 0;
switch (nla_type(nested_attr)) {
case OVS_KEY_ATTR_PRIORITY:
skb->priority = nla_get_u32(nested_attr);
break;
case OVS_KEY_ATTR_TUN_ID:
/* If we're only using the TUN_ID action, store the value in a
* temporary instance of struct ovs_key_ipv4_tunnel on the stack.
* If both IPV4_TUNNEL and TUN_ID are being used together we
* can't write into the IPV4_TUNNEL action, so make a copy and
* write into that version.
*/
if (!OVS_CB(skb)->tun_key)
memset(tun_key, 0, sizeof(*tun_key));
else if (OVS_CB(skb)->tun_key != tun_key)
memcpy(tun_key, OVS_CB(skb)->tun_key, sizeof(*tun_key));
OVS_CB(skb)->tun_key = tun_key;
OVS_CB(skb)->tun_key->tun_id = nla_get_be64(nested_attr);
break;
case OVS_KEY_ATTR_IPV4_TUNNEL:
OVS_CB(skb)->tun_key = nla_data(nested_attr);
break;
case OVS_KEY_ATTR_ETHERNET:
err = set_eth_addr(skb, nla_data(nested_attr));
break;
case OVS_KEY_ATTR_IPV4:
err = set_ipv4(skb, nla_data(nested_attr));
break;
case OVS_KEY_ATTR_IPV6:
err = set_ipv6(skb, nla_data(nested_attr));
break;
case OVS_KEY_ATTR_TCP:
err = set_tcp(skb, nla_data(nested_attr));
break;
case OVS_KEY_ATTR_UDP:
err = set_udp(skb, nla_data(nested_attr));
break;
}
return err;
}
/* Execute a list of actions against 'skb'. */
static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
const struct nlattr *attr, int len,
struct ovs_key_ipv4_tunnel *tun_key, bool keep_skb)
{
/* Every output action needs a separate clone of 'skb', but the common
* case is just a single output action, so that doing a clone and
* then freeing the original skbuff is wasteful. So the following code
* is slightly obscure just to avoid that. */
int prev_port = -1;
const struct nlattr *a;
int rem;
for (a = attr, rem = len; rem > 0;
a = nla_next(a, &rem)) {
int err = 0;
if (prev_port != -1) {
do_output(dp, skb_clone(skb, GFP_ATOMIC), prev_port);
prev_port = -1;
}
switch (nla_type(a)) {
case OVS_ACTION_ATTR_OUTPUT:
prev_port = nla_get_u32(a);
break;
case OVS_ACTION_ATTR_USERSPACE:
output_userspace(dp, skb, a);
break;
case OVS_ACTION_ATTR_PUSH_VLAN:
err = push_vlan(skb, nla_data(a));
if (unlikely(err)) /* skb already freed. */
return err;
break;
case OVS_ACTION_ATTR_POP_VLAN:
err = pop_vlan(skb);
break;
case OVS_ACTION_ATTR_SET:
err = execute_set_action(skb, nla_data(a), tun_key);
break;
case OVS_ACTION_ATTR_SAMPLE:
err = sample(dp, skb, a, tun_key);
break;
}
if (unlikely(err)) {
kfree_skb(skb);
return err;
}
}
if (prev_port != -1) {
if (keep_skb)
skb = skb_clone(skb, GFP_ATOMIC);
do_output(dp, skb, prev_port);
} else if (!keep_skb)
consume_skb(skb);
return 0;
}
/* We limit the number of times that we pass into execute_actions()
* to avoid blowing out the stack in the event that we have a loop. */
#define MAX_LOOPS 5
struct loop_counter {
u8 count; /* Count. */
bool looping; /* Loop detected? */
};
static DEFINE_PER_CPU(struct loop_counter, loop_counters);
static int loop_suppress(struct datapath *dp, struct sw_flow_actions *actions)
{
if (net_ratelimit())
pr_warn("%s: flow looped %d times, dropping\n",
ovs_dp_name(dp), MAX_LOOPS);
actions->actions_len = 0;
return -ELOOP;
}
/* Execute a list of actions against 'skb'. */
int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb)
{
struct sw_flow_actions *acts = rcu_dereference(OVS_CB(skb)->flow->sf_acts);
struct loop_counter *loop;
int error;
struct ovs_key_ipv4_tunnel tun_key;
/* Check whether we've looped too much. */
loop = &__get_cpu_var(loop_counters);
if (unlikely(++loop->count > MAX_LOOPS))
loop->looping = true;
if (unlikely(loop->looping)) {
error = loop_suppress(dp, acts);
kfree_skb(skb);
goto out_loop;
}
OVS_CB(skb)->tun_key = NULL;
error = do_execute_actions(dp, skb, acts->actions,
acts->actions_len, &tun_key, false);
/* Check whether sub-actions looped too much. */
if (unlikely(loop->looping))
error = loop_suppress(dp, acts);
out_loop:
/* Decrement loop counter. */
if (!--loop->count)
loop->looping = false;
return error;
}
独立内核模块示例代码
#include <linux/module.h>
#include <linux/netfilter.h>
#include <linux/netfilter_ipv4.h>
#include <linux/ip.h>
#include <linux/udp.h>
#include <linux/skbuff.h>
#define TARGET_PORT 12345 // 设置特定的目的端口
#define MULTICAST_IP "224.0.0.1" // 指定的组播IP地址
// Netfilter钩子函数,用于处理入站的数据包
static unsigned int hook_func(void *priv, struct sk_buff *skb, const struct nf_hook_state *state)
{
struct iphdr *ip_header;
struct udphdr *udp_header;
// 检查skb包是否为空
if (!skb)
return NF_ACCEPT;
// 检查skb包是否包含IP头部
if (!skb_network_header(skb))
return NF_ACCEPT;
// 获取IP头部和UDP头部
ip_header = ip_hdr(skb);
udp_header = (struct udphdr *)(skb_transport_header(skb) + ip_hdrlen(skb));
// 检查是否为UDP协议和特定目的端口
if (ip_header->protocol == IPPROTO_UDP && ntohs(udp_header->dest) == TARGET_PORT) {
// 修改目的IP地址为指定的组播IP
ip_header->daddr = in_aton(MULTICAST_IP);
// 重新计算校验值
udp_header->check = 0;
udp_header->check = csum_tcpudp_magic(ip_header->saddr, ip_header->daddr,
skb->len - ip_hdrlen(skb), IPPROTO_UDP, csum_partial(udp_header, skb->len - ip_hdrlen(skb), 0));
// 更新校验和
skb->ip_summed = CHECKSUM_NONE;
skb->pkt_type = PACKET_MULTICAST;
// 让tcp/ip协议栈处理skb包
return NF_ACCEPT;
}
return NF_ACCEPT;
}
// 初始化和清理模块
static struct nf_hook_ops nfho = {
.hook = hook_func,
.hooknum = NF_BR_PRE_ROUTING,
.pf = NFPROTO_BRIDGE,
.priority = NF_BR_PRI_FIRST,
};
static int __init my_module_init(void)
{
return nf_register_hook(&nfho);
}
static void __exit my_module_exit(void)
{
nf_unregister_hook(&nfho);
}
module_init(my_module_init);
module_exit(my_module_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kimson");
因为历史原因,很多工具还需要32位库,Debian/Ubuntu默认未开启支持,直接安装会提示失败,如:
sudo dpkg --add-architecture i386
sudo apt update
这样就可以愉快的安装了。
近期抽空注册了一个免费的VPS,本着不浪费的原则,考虑顺手搭建个Blog,虽然很老土,但还是有不少收获,至少可以解决几点关键需求:
考虑几点关键需求:
综合上述需求,对应的技术方案:
Dockers+Docker-compose 实现快速部署,并解决后期的维护问题
所以综合建立3个docker,分别是:
Caddy2 + php8 + mysql8
Docker-compose.yml:
version: '3'
services:
caddy:
image: caddy
ports:
- "80:80"
- "443:443"
- "443:443/udp"
volumes:
- /path_to_your/Caddyfile:/etc/caddy/Caddyfile
- /path_to_your/caddy_data:/data
- /path_to_your/caddy_config:/config
#Caddy requires write access to two locations: a data directory, and a configuration directory.
- /path_to_your/site:/srv
restart: unless-stopped
networks:
- frontend
db:
image: mysql
volumes:
- /path_to_your/database:/var/lib/mysql
- /path_to_your/mysql_logs:/var/log/mysql
- /path_to_your/mysql_conf:/etc/mysql/conf.d
restart: always
expose:
- "3306"
environment:
- MYSQL_ROOT_PASSWORD=your_root_password
- MYSQL_DATABASE=typecho
- MYSQL_USER=typecho
- MYSQL_PASSWORD=your_user_password
- TZ=Asia/Shanghai
networks:
- frontend
php:
#image: php:fpm
build: .
volumes:
- /path_to_your/site:/var/www/html
restart: always
expose:
- "9000"
environment:
- TZ=Asia/Shanghai
depends_on:
- db
- caddy
networks:
- frontend
networks:
frontend:
Caddyfile:
v365.life www.v365.life {
encode gzip
tls [email protected]
php_fastcgi php:9000 {
root /var/www/html
}
file_server
log {
output file /data/log/web.log
}
}
dockerfile:
FROM php:fpm
RUN docker-php-ext-install mysqli pdo pdo_mysql && docker-php-ext-enable pdo_mysql
下载最新的typecho zip包,并解压到目录:/path_to_your/site下面
执行如下命令,启动服务:
sudo docker-compose up -d
启动后根据typecho安装页面提示进行配置,在数据库界面选择pdo Mysql数据接口,需要根据配置填写: